EVALUACIÓN: 1^a CURSO: 1 B.C.S. FECHA: 20/10/17 EXAMEN: B1-1

- 1) a) Enuncia el Teorema del resto y su "consecuencia directa"
 - **b)** i) Escribe la expresión correspondiente y representa gráficamente el intervalo $(-\epsilon, -1)$
- ii) Expresa como intervalo la expresión $\{x \ R/-1/2 \le x \le 1/2\}$
- iii) Expresa como intervalo el entorno E(-1, 0'01)
- iv) Expresa como entorno el intervalo (-0'7, 0'1)
- 2) a) Calcula y simplifica: $3\sqrt{40} \sqrt{1000} + (2\sqrt{3} + 3\sqrt{8})^2 (\sqrt{24} 5\sqrt{6})^2$
 - **b)** Racionaliza y simplifica $\frac{2\sqrt{3}}{2\sqrt{12}-\sqrt{3}-3} \frac{1}{\sqrt{3}}$
- 3) Dado el polinomio $P(x)=x^4-3x^3+x+m$
 - a) Calcula "m" para que sea divisible por $(x-\sqrt{2})$
 - **b**) Sin aplicar Ruffini, calcula **m** sabiendo que x=-1/2 es una raíz del polinomio
- 4) Factoriza el siguiente polinomio $P(x)=3x^5-5x^4-16x^3+12x^2$ especificando sus raíces
- 5) Simplifica la siguiente operación de fracciones algebraicas:

$$\frac{x}{x-2} \cdot \left(\frac{5}{x^2 - x} : \frac{10}{x^2 - x - 2} \right)$$

- 1) a) Racionaliza y simplifica $\frac{3\sqrt{3}+1}{\sqrt{75}-\sqrt{12}}-\frac{\sqrt{8}}{\sqrt{18}-\sqrt{3}}$
 - b) Descompón en factores el numerador y el denominador y simplifica la fracción:

$$\frac{x^3 - 7x^2 + 15x - 9}{x^3 - 5x^2 + 3x + 9}$$

2) a) Descompón en factores el siguiente polinomio:

$$p(x) = x^4 + 2x^3 - 13x^2 - 14x + 24$$

- **b) i)** Dado el polinomio $q(x) = 2x^4 mx^2 + 1$ calcula m para que al dividirlo entre (x+3) el resto sea 136
- ii) Para m = 3 calcula todas las raíces del polinomio
- 3) a) Resuelve el sistema: $\begin{cases} x^2 + 2x y = 7 \\ 4x y 7 = 0 \end{cases}$
 - **b)** Resuelve la ecuación: $x + \sqrt{3}x + 10 = 6$
- 4) La suma de las edades de tres hermanos en el momento actual es de 15 años. Dentro de 1 año, la edad del menor será la mitad de la edad del mediano. Hace 2 años la edad del mayor era el doble de la edad del mediano. Calcula la edad actual de cada uno. (Resuélvelo por el método de Gauss)
- 5) Resuelve el siguiente sistema de inecuaciones:

$$\frac{2(x-3)}{x+2} = 1$$

$$\frac{2(x-1)}{3} - \frac{3(x+1)}{2} < 1-4x$$

- 1) a) Racionaliza y simplifica $\frac{2\sqrt{2}}{3\sqrt{2}-\sqrt{3}} + \frac{\sqrt{3}}{2\sqrt{3}+\sqrt{2}} \frac{\sqrt{2}}{2\sqrt{3}}$
 - **b**) Opera y simplifica $\left(x + \frac{x}{x-1}\right) : \left(x \frac{x}{x-1}\right) \frac{x}{x+2}$
- 2) a) Dado el polinomio $p(x) = 3x^4 + 9x^{3-} 3x^2 + mx 18$, calcula "m" sabiendo que x = -2 es raíz del polinomio, y después descompón el polinomio en factores.
 - **b)** Factoriza el polinomio $q(x) = x^{4-} x^{3-} 14x^{2} + 12x + 24$
- 3) a) Resuelve la ecuación $\sqrt{2x-3} + 1 = x$
 - **b**) Resuelve el sistema $\begin{cases} x^2 + 4x y = 2 \\ -x y 2 = 0 \end{cases}$
- **4)** Calcula tres números sabiendo que suman 50, el doble del mediano excede en 5 unidades al mayor, y que la mitad del menor es igual a la quinta parte del mayor. (Resuélvelo por el método de Gauss).
- 5) Resuelve el siguiente sistema de inecuaciones $\begin{cases} \frac{3x-1}{2x+1} < 2 \\ x^2 3x = 0 \end{cases}$

EVALUACION: 2^a CURSO: 1 B.C.S. FECHA: 19/1/18 EXAMEN: B2-1

- 1) Dadas las funciones: $f(x) = \frac{x^3 x}{x + 4}$ $g(x) = x^2 3$ y $h(x) = \sqrt[3]{\frac{3 x}{x + 1}}$
 - a) Calcula el dominio de las tres funciones
 - **b**) ¿Pertenece -1 al recorrido de f(x)? ¿Y al de h(x)?
 - c) Calcula el signo de la función f(x) y el signo de h(x)
 - **d**) Calcula las simetrías de la función f(x) y las de g(x)
 - e) Calcula los cortes de la función f(x) con la función g(x)
- 2) Dada la función: $f(x) = \begin{cases} 2x + 8 & si \quad x = -3 \\ -x^2 + 4 & si = -3 < x < 1 \\ x^2 x = 2 & si = x = 1 \end{cases}$
 - i) Representa la función gráficamente
 - ii) Estudia su continuidad
 - iii) Estudia los intervalos de crecimiento y decrecimiento
 - iv) Calcula los puntos de corte con los ejes de coordenadas
- 3) a) Dada la función $f(x) = |x^2 4x|$, defínela a trozos y represéntala gráficamente
 - b) Representa gráficamente, calculando todos sus elementos principales, la función

$$g(x) = \frac{3}{2 - x}$$

c) Dada la siguiente tabla :

X	-3	-1	4
f(x)	-5	3	5

Calcula por interpolación lineal f(-4), f(2) y f(5)

- 1) a) Halla la función que expresa el área de un triángulo equilátero en función de su lado.
 - **b)** i) Calcula el dominio de $f(x) = \frac{1}{x^3 y}$ y $g(x) = \sqrt{\frac{1}{1 y^4}}$
 - ii) Calcula las simetrías de $f(x) = \frac{1}{x^3 x}$ $y g(x) = \sqrt{\frac{1}{1 x^4}}$
 - iii) Calcula los cortes con los ejes de $h(x) = \frac{x^2 1}{x}$
 - **iv**) Calcula el signo de $y(x) = \frac{x^3 + 3x}{x 1}$
- 2) a) Dada la función $f(x) =\begin{cases} -2x+3 & \text{si } x = 1 \\ x^2-4x & \text{si } x > 1 \end{cases}$
 - i) Represéntala gráficamente
 - ii) Estudia crecimiento y decrecimiento
 - iii) Calcula los cortes con los ejes
 - iv) Estudia su continuidad
 - **b)** Define a trozos y representa g(x) = |2-6x|
 - 3) a) Resuelve las ecuaciones exponenciales

i)
$$3.2^x + 7 = 15$$

ii)
$$4^x - 2^{x+1} = 8$$

i)
$$3.2^x + 7 = 15$$
 ii) $4^x - 2^{x+1} = 8$ **iii)** $3^{2x} - 10.$ $3^x + 9 = 0$

- **b**) Dada la función $y(x) = 3^x x$, calcula por interpolación lineal y(1,4)
- 4) a) Calcula el valor de "x" en cada caso

i)
$$\log_7 11 = x-1$$

ii)
$$\log_{ab} x = -4$$

i)
$$\log_7 11 = x-1$$
 ii) $\log_{\sqrt{2}} x = -4$ iii) $\log_{x^2-9} 4 = \frac{1}{2}$

b) En una granja avícola avícola la población pasa de 1000 a 1300 individuos en un mes ¿Cuál será la población al cabo de un año?

EVALUACION: 2^a CURSO: 1 B.C.S. **FECHA: 9/3/18 EXAMEN: B2-R**

- 1) a) Define dominio y recorrido de una función.
- **b)** Dadas las funciones $f(x) = \sqrt[3]{\frac{x}{1-x}}$; $g(x) = \frac{x+4}{x^2+x-2}$
 - i) Halla el dominio de definición de las dos funciones.
 - ii) ¿Pertenece 1 al recorrido de f(x) y al de g(x)?
 - iii) Calcula el signo de f(x) y de g(x)
- $f(x) = \begin{cases} -x^2 + 4 & si \quad x < 0\\ 4 3x & si \quad 0 \le x \le 3\\ x^2 2x 8 & si \quad x > 3 \end{cases}$ 2) a) Dada la función:
 - i) Represéntala gráficamente
 - ii) Calcula los cortes con los ejes de coordenadas
 - iii) Estudia su crecimiento y decrecimiento
 - **b)** Resuelve la ecuación $\log x^3 \log x^2 + 3 \cdot \log \sqrt[3]{x} = 2$
- 3) a) Dibuja con todos sus elementos principales la gráfica de la función y=log(8-2x)
 - **b)** Resuelve las siguientes ecuaciones exponenciales:

i)
$$3^{x+1} - 4 \cdot 3^{x-1} + 2 \cdot 3^{x-2} = 17$$
 ii) $5^{x+1} - 4 \cdot 25^x + 5^{x+2} = 26$

ii)
$$5^{x+1}$$
 - 4. 25^x + 5^{x+2} = 26

4) a) Resuelve las siguientes ecuaciones logarítmicas:

i)
$$\log_{\sqrt{x-1}} 81 = 4$$

ii)
$$\log_2(x^4-8)=3$$

i)
$$\log_{\sqrt{x-1}} 81 = 4$$
 ii) $\log_2 (x^4 - 8) = 3$ iii) $\log_5 7 = \frac{x-1}{3}$

b) A Marisa por un capital de 50.000 € le devuelve el banco (a interés compuesto) al cabo de 13 años 60.000 € A Juan por 40.000 €le devuelve el banco al cabo de 10 años 48.000 € ¿A cuál de los dos le ha ofrecido el banco mejor rédito?

1) Calcula los siguientes límites:

- a) $\lim_{x \to +\infty} (\sqrt{x^2 x} \sqrt{x^2 + 3x})$
- **b**) $\lim_{x \to -1} \left(\frac{x+2}{x^2-1} \frac{x-2}{x^2+x} \right)$
- c) $\lim_{x \to -\infty} \left(\frac{2 x^3 4 x^2 + 1}{3 x^3 5 x^2} \right)^{\frac{x^4 x}{x^3 3}}$
- **d**) $\lim_{x \to 1} \left(\frac{x^2 1}{3x} \cdot \frac{x^2 + x}{x^2 3x + 2} \right)$

e) $\lim_{x \to 3} \frac{\sqrt{x^2 - x + 3} - 3}{x^2 + 2x - 15}$

- (3'5 puntos)
- 2) a) Calcula "a" para que la función $f(x) = \begin{cases} ax 2 & si & x = 1 \\ 4x 2a & si & x > 1 \end{cases}$ sea continua en todo R
 - **b**) Calcula "k" para que la función $f(x) = \begin{cases} 2^{x-2} & si & x = 3 \\ \sqrt{x+k} & si & x > 3 \end{cases}$ sea continua en

la conexión. Para ese valor de **k** ¿es continua en todo R?

(1 punto)

3) Estudia la continuidad global de la siguiente función:

$$f(x) = \begin{cases} 2x - 5 & \text{si} \quad x \le 0\\ \frac{x - 6}{x - 2} & \text{si} \quad 0 < x < 3\\ \frac{-5x}{x + 2} & \text{si} \quad x = 3 \end{cases}$$
 (2'5 puntos)

4) a) Haz un esbozo de la gráfica de una función que cumpla las siguientes condiciones:

$$\lim_{x \to -\infty} f(x) = 2 \qquad \lim_{x \to +\infty} f(x) = 0 \qquad \lim_{x \to -2^{-}} f(x) = -\infty \qquad \lim_{x \to -2^{+}} f(x) = +\infty$$

$$\lim_{x \to 0^{-}} f(x) = 0 \qquad \lim_{x \to 0^{+}} f(x) = 2 \qquad \text{En P (4,-3) hay un mínimo relativo}$$

- **b)** Dada la función $f(x) = \frac{x^2 + 1}{x^2 2x}$. Calcula sus asíntotas y haz un esbozo de cómo se acerca la curva a las asíntotas
- c) Define función continua en un punto. Describe los tipos de discontinuidades que hay explicando claramente cómo son los límites laterales y el valor de la función en cada una de ellas

(3 puntos)

1) Dada la siguiente función
$$f(x) = \begin{cases} \frac{x+a}{x^2+2 \ x-3} & si \quad x < -1 \\ \frac{x+3}{x^2+1} & si \quad -1 \quad x < 1 \\ \frac{x^2-1}{x-1} & si \quad 1 \quad x \end{cases}$$

- i) Calcula "a" para que sea continua en x = -1
- ii) Estudia la continuidad global de la función cuando a = -3
- 2) Calcula los siguientes límites

i)
$$\lim_{x \to 2} \frac{\sqrt{2 x + 5} - 1}{x^2 - x - 6}$$

ii) $\lim_{x \to \infty} (\sqrt{9 x^2 - 2 x + 3} - \sqrt{9 x^2 - 2})$
iii) $\lim_{x \to \infty} (\frac{x^3 + 1}{x^2 - 1} - \frac{x^2 - 3 x + 2}{x - 1})$
iv) $\lim_{x \to 2} \frac{x^3 - 2 x^2}{x^2 - 3 x + 2}$

- 3) a) Calcula la recta tangente a la función f(x)=2 $x=\frac{3}{x}+\frac{4}{\sqrt{x}}$ en el punto de abscisa $\mathbf{x}=\mathbf{1}$
 - **b**) Deriva las siguientes funciones:

$$f(x) = \sqrt{\frac{x^3}{x^2 - 1}}$$
 $g(x) = (x^2 + x)^3$. $(x^3 - 1)^2$

- c) Dada la función $f(x) = a x^3 b x^2 + c x + 2$ halla "a", "b" y "c" sabiendo que tiene un extremo relativo en P(4,-30) y un punto de inflexión en x=2
- 4) Dada la función $f(x) = \frac{x+1}{x^2+3}$. Dibuja su gráfica calculando todos sus elementos principales

EVALUACIÓN: 3ª CURSO: 1 B.C.S. FECHA: 11/5/18 EXAMEN: B3-R

1) a) Dada la siguiente función $f(x) = \begin{cases} \frac{x^2 + x}{x^2 + 3 x + 2} & si & x < -1 \\ \frac{2x - 1}{x^2 - 4} & si - 1 & x < 3 \\ \frac{x + 1}{2x - 2} & si & 3 < x \end{cases}$

estudia su continuidad global.

b) Calcula k para que la función g(x) sea continua en x=3

$$g(x) = \begin{cases} \frac{\sqrt{x+1} - 2}{x - 3} & si & x = 3\\ k + 1 & si & x = 3 \end{cases}$$

- 2) Calcula los siguientes límites
- i) $\lim_{x \to 2} \frac{\sqrt{3-x}-1}{x^2+2x-8}$ ii) $\lim_{x \to 1} \frac{x^3-x}{2x^2+3x+1}$
- iii) $\lim_{x \to \infty} \left(\frac{x^2 + x 1}{x 2} \frac{x^3 1}{x^2 4} \right)$
- iv) $\lim_{x \to \infty} \left(\frac{3 x^3 + 1}{2 x^3 4 x + 2} \right)^{\frac{x^2 1}{x + 2}}$
- 3) a) Calcula la recta tangente a la función $f(x) = \frac{3}{x} \frac{4}{\sqrt{x+1}} + 1$ en el punto de abscisa x = 3
- b) Calcula la recta tangente a la función $g(x) = \sqrt{\frac{x^2 + 4}{x + 1}}$ en el punto de abscisa x = 0
- c) Dada la función $f(x) = x^4 2 x^2$ calcula sus extremos relativos y sus puntos de inflexión
- 4) Dada la función $f(x) = \frac{x^2 + 1}{x^2 4}$. Dibuja su gráfica calculando todos sus elementos principales

1) Hemos relacionado los suspensos de la 1ª evaluación (x) y los suspensos de la 2ª evaluación (y) de 20 alumnos y hemos obtenido la siguiente tabla:

X_{i}	y_{j}	f_{ij}			
0	0	3			
0	1	2			
1	0	3			
1	1	2			
3	1	4			
3	2	1			
4	4	5			
	·				

- a) Calcula el coeficiente de correlación e interprétalo
- **b)** Si un alumno ha tenido 6 suspensos en la 2ª evaluación, ¿cuántos suspensos cabe esperar que haya tenido en la 1ª evaluación? ¿Es fiable el resultado? Razona la respuesta
- 2) a) Tenemos un dado en el que hay tres unos, dos doses y un tres. Lo lanzamos dos veces y anotamos la suma de los resultados. Consideramos los siguientes sucesos:

 $A=\{\text{La suma es menor de 4}\}\$ y $B=\{\text{La suma es múltiplo de 3}\}\$

- ${f i}$) Escribe el espacio muestral y calcula la probabilidad de cada suceso elemental
- ii) Calcula $A \cup B$ y $A \cap B$. Calcula también $p(A \cup B)$ y $p(A \cap B)$
- **b)** Define espacio muestral, suceso, sucesos incompatibles y sucesos complementarios o contrarios
- 3) En la urna A tengo 2 bolas negras y 2 blancas, en la urna B tengo 3 bolas negras y 1 blanca y en la urna C tenga 1 bola negra y 2 blancas. Sacamos dos bolas de la urna A, si son del mismo color sacamos una bola de la urna B y si son de distinto color sacamos una bola de la urna C. Calcula:
 - a) Probabilidad de que la última bola sacada sea negra
 - **b**) Probabilidad de que las dos últimas bolas sacadas sean blancas
 - c) Probabilidad de que las tres bolas sacadas sean del mismo color
- **4)** La probabilidad de pasar de curso en un determinado grupo es del 85%. Si el grupo tiene 10 alumnos, calcula:
 - a) La probabilidad de que al menos 8 alumnos pasen de curso
 - **b**) La probabilidad de que no pasen de curso más de 7 alumnos
 - c) La probabilidad de que no pasen de curso entre 5 y 7 alumnos
- **5**) La esperanza de vida de una persona en España se distribuye normalmente con una media de 85 años y una desviación típica de 5 años
- a) ¿Cuál es la probabilidad de que una persona viva menos de 80 años?
- **b)** ¿Cuál es la probabilidad de que una persona viva entre 82 años y 87 años?
- c) Si en España hay 40 millones de habitantes ¿cuántos cabe esperar que tengan más de 100 años?

Tabla de la función de distribución de una N(0,1)

~z : ·	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	80.0	0.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
8.0	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
≾0.9 ∌1	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
_1.0 ,	.8413	.8438	.8461	.8485	3,8508	:8531	.8554	:8577	18599	.8621
n.t.e	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3 🗷	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.77 h	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9739	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
· 2.3 ·	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	1.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	,9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	,9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998
3,5	.9998	,9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998
3.6	.9998	.9998	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999
3.7	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999
3.8	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999
3.9	1	1	1	1	1	1	1	1	1	1

1) Hemos relacionado el número de hermanos (x) con las notas de un examen de matemáticas (y) de 25 alumnos y hemos obtenido la siguiente tabla:

X_{i}	y_{j}	f_{ij}			
0	6	4			
1	4	1			
1	8	5			
2	2	6			
2	7	3			
3	3	4			
5	5	2			

- a) Calcula las rectas de regresión y dibújalas sobre la nube de puntos
- b) Si hacemos 20 predicciones ¿en cuántas de ellas acertaríamos aproximadamente?
- **2) a)** De una baraja española sacamos 2 cartas (sin reemplazamiento). Calcula las siguientes probabilidades:
 - i) Las dos sean oros
- ii) Una sea oros y la otra copas
- iii) Las dos sean del mismo palo
- iv) Una de ellas sea bastos
- b) i) Enuncia la regla de Laplace
- ii) Si A y B son sucesos incompatibles con p(A)=0.4, p(B)=0.3, entonces ¿cuánto vale $p(A \cup B)$? Razona la respuesta
- 3) En la bolsa A tengo dos números negativos y uno positivo, en la bolsa B tengo un número positivo, un número negativo y el cero. Lanzamos una moneda, si sale cara sacamos dos números de la bolsa A, si sale cruz sacamos un número de la bolsa A y otro número de la bolsa B. Calcula las siguientes probabilidades:
- a) Probabilidad de que el producto de los dos últimos números sea negativo
- b) Probabilidad de que el producto de los dos últimos números sea cero
- c) Probabilidad de que los dos últimos números tengan el mismo signo. (El cero no tiene signo)
- 4) En una moneda trucada la probabilidad de sacar cara es $\frac{1}{3}$. Si lanzamos 6

monedas, calcula las siguientes probabilidades:

- a) La probabilidad de que al menos una sea cara
- **b)** La probabilidad de que no salgan más de 4 cruces
- c) La probabilidad de que salgan el mismo número de caras que de cruces
- 5) El tiempo de espera medio para que me sirvan en restaurante se distribuye normalmente con una media de 12 minutos y una desviación típica de 3 minutos
- a) ¿Cuál es la probabilidad de que tarden en servirme más de 10 minutos?
- **b**) ¿Cuál es la probabilidad de que tarden en servirme menos de 5 minutos?
- c) Si voy tres días seguidos ¿Cuál es la probabilidad de que los tres días tarden en servirme más de un cuarto de hora?

Tabla de la función de distribución de una N(0,1)

=z : -	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	80.0	0.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
∞0.2 ⊝	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3 ‡	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
∹0.5 ∵	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
≾0.9 ⊘	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	38508	.8531	.8554	:8577	18599	.8621
11.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3 🌝	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1,7: 1	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
-1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9739	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	1.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998
: 3,5	.9998	,9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998
3.6	.9998	.9998	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999
43.7 E	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999
3.8	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999
3.9	1	1	1	1	1	1	1	1	1	1

1) Resuelve el siguiente sistema de inecuaciones

$$\begin{cases} \frac{x-4}{4} - \frac{2x+3}{3} & \frac{2x-3}{6} - 3\\ x^2 < x + 6 & \end{cases}$$

- 2) Calcula tres números que suman 105, donde al dividir el mayor entre el menor obtenemos un cociente de 3 y un resto de 5, y cuya media aritmética de los dos mayores es tres veces el menor. (Resuélvelo por el método de Gauss).

- 3) a) Calcula el dominio de $f(x) = \frac{\sqrt{x+4}}{x-1}$ b) Calcula la simetría de $g(x) = \frac{x^2-1}{x^3}$ c) Calcula los cortes con los ejes de $h(x) = \frac{5x^2-1}{3-x}$ d) Calcula el signo de $q(x) = \frac{3x^2-12}{3x-2}$ 4) Resuelve las ecuaciones a) $4^{x+1}+2^{x+3}-320=0$ b) $3 \log x \log 32 = \log \frac{x}{2}$

- 5) Dada la función $f(x) = \begin{cases} \frac{5x-2}{x-6} & x = 0 \\ \frac{kx}{x-6} & x = 3, y \end{cases}$ calcula "k" para que sea continua en x = 3, y

estudia la continuidad global para dicho "k".

- 6) Calcula los siguientes límites a) $\lim_{x\to 2} \frac{\sqrt{x^2+5}-3}{x^2-x-2}$ b) $\lim_{x\to 2} \frac{\left(\frac{x^2+2}{x}-\frac{x^3}{x^2+4}\right)}{x^2-x-2}$
- 7) Dada la función $\frac{4x-5}{v^2-1}$, dibuja su gráfica calculando todos sus elementos principales.
- 8) La siguiente tabla relaciona las variables X: gastos publicidad (miles de €) con Y: ventas (miles de €) durante los seis primeros meses de promoción de un cierto producto

6 a) Si gasto en publicidad 5500 € (5,5 en miles), ¿qué ventas espero obtener? \boldsymbol{X} 1 3 5

- **Y** 10 47 b) Para obtener ventas de 20000 €, ¿cuántos miles de euros se estima que 17 30 28 39 hay que gastar en publicidad? ¿Son fiables estas estimaciones? Razónalo
- 9) En una urna tengo 3 bolas rojas, 2 verdes, y 1 gris. Extraigo tres bolas:
 - a) Probabilidad de que sean rojas b) Probabilidad de sacar alguna bola roja y alguna verde.
- 10) a) En el proceso de fabricar bombillas, el 0,5 % son defectuosas. Se comercializan en paquetes de 100 Calcula la probabilidad de que ninguna sea defectuosa y de que alguna sea defectuosa.
 - b) La distribución del número de atunes capturados es una normal de media 110 y desviación 15. Si se considera una buena campaña con más de 100 atunes, ¿qué % estimado de barcos no la tendrán?

Tabla de la función de distribución de una N(0,1)

=z : -	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	80.0	0.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3 💰	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
8.0	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
:0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
_1.0 ;∜	.8413	.8438	.8461	.8485	38508	.8531	.8554	.8577	48599	.8621
11.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3 🧟	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
5.1,7 ₃ 5	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9739	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
-2.3 ⊕	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	1.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	,9995	.9995	.9995
33.3	.9995	.9995	.9995	,9996	,9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998
3,5	.9998	,9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998
3.6	.9998	.9998	.9999	,9999	.9999	.9999	.9999	.9999	.9999	.9999
3.7	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999
3.8	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999
3.9	1	1	1	1	1	1	1	1	1	1