Lecciones 1 y 2 (Bloque I) Día 19/10/2011

NOTA: En los ejercicios tienen que constar todos los pasos, en caso contrario, el ejercicio no se tendrá en cuenta.

Pregunta 1. a) Utilizando las potencias de base 10 realiza la operación:

$$\frac{009 \cdot 270000}{(0'03)^2}$$

b) Indica a cuáles de los siguientes conjuntos $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ pertenecen los números.

$$\frac{16}{4}$$
, 0'23, $\sqrt{-4}$, 0'6 $\widehat{4}$, $\sqrt{25}$, $\frac{3}{5}$, -2, $\sqrt{13}$

c) El número $\frac{4}{3}$ pertenece al entorno $E\left(2,\frac{1}{2}\right)$

Pregunta 2. a) Calcula $\sqrt{12} - \sqrt{5} \cdot \sqrt{15} + 2\sqrt{27} - (\sqrt{3})^3$

b) Racionaliza y simplifica la expresión:

$$\frac{\sqrt{12} + \sqrt{24}}{\sqrt{75} - \sqrt{27}}$$

Pregunta 3. a) Halla "m" para que $x = \frac{1}{2}$ sea raiz del polinomio $P(x) = 2x^3 - 5x^2 + mx - 4$

b) Es $x = \sqrt{3}$ raiz del polinomio $P(x) = (x^2 - 2)^2 - (3x + 4)(3x - 4)$

Pregunta 4. Factorizar el polinomio:

$$P(x) = 2x^4 - 3x^3 - 11x^2 + 6x$$

Pregunta 5. Realiza la siguiente operación, simplificando el resultado:

$$\frac{x^3 - 9x}{x^2 - 2x + 1} : \frac{x^2 - 3x}{x^2 - 1}$$

- 1.- a) Opera, racionalizando y simplificando: $\frac{2-\sqrt{3}}{\sqrt{3}+1} \frac{1}{2\sqrt{3}}$
 - b) Calcula, simplificando el resultado: $\frac{2x^2 + 4x 6}{x 2} \cdot \frac{x^2 4x + 4}{x^2 9}$
- 2.- Resuelve las ecuaciones:

a)
$$x \cdot (x^2 - 5x) = (x+1)^2 - x^2 - 11$$

b)
$$\sqrt{2x-1} + 4 = x + 2$$

3.- Resuelve, aplicando el método de Gauss, el sistema:

$$\begin{cases}
 x + y + z = 2 \\
 2x + y - z = 3 \\
 3x + 2y - 4z = 5
 \end{cases}$$

- 4.- Una empresa ha invertido 69000 € en la compra de ordenadores portátiles de tres clases A, B y C, cuyos costes por unidad son 2400 €, 1200€ y 1000 € respectivamente. Sabiendo que en total han comprado 50 ordenadores y que el número de ordenadores de tipo B excede en 5 al doble de los del tipo A. Plantea un sistema, y resuélvelo por el método de Gauss, que nos permita saber cuántos ordenadores de cada clase se han comprado.
- 5.- Resuelve y representa gráficamente las soluciones del sistema:

$$\left. \frac{x+1}{2} - \frac{2-3x}{5} \le \frac{1+4x}{10} \right\}$$

$$x^2 - 2x - 3 < 0$$

Examen Tema I(Recup.), Día 7/12/2011

NOTA: En los ejercicios tienen que constar todos los pasos, en caso contrario, el ejercicio no se tendrá en cuenta.

Pregunta 1. a) Opera y simplifica: $\sqrt{12} - 3\sqrt{\frac{48}{25}} + \frac{1}{4}\sqrt{75} - \sqrt{243}$

b) Aplicando las propiedades de las potencias, simplifica: $\frac{2^3 \cdot 3^5 \cdot 9^{-3} \cdot 16^{-1}}{12^4 \cdot 8^{-2} \cdot 27^{-3}}$

Pregunta 2. Resuelve las ecuaciones:

a)
$$\frac{x-2}{x-3} - \frac{5x}{x^2 - x - 6} = \frac{2x+2}{x+2}$$

b)
$$x^6 - 7x^3 - 8 = 0$$

Pregunta 3. a) Demostar si el polinomio $P(x) = x^3 + 4x^2 - 3x - 12$ tiene alguna raíz entera.

b) Dado el polinomio $P(x) = x^2 + ax - b$, hallar a y b para que tenga una raíz en x = 1 y resto 3 al dividirlo por x + 2.

Pregunta 4. Los 90 alumnos de 2º de Bachillerato de un I,E.S. están divididos en tres grupos A, B y C. Calcular el número de alumnos de cada grupo sabiendo que si se pasan 7 alumnos del grupo B al grupo A ambos grupos tendrían el mismo número de alumnos; o que si se pasan 4 alumnos del grupo C al grupo A, en este habría la mitad de alumnos que en el grupo C (Nota: resolver el sistema por el método de Gauss).

Pregunta 5. Resuelve y representa gráficamente las soluciones del sistema:

$$\begin{cases} 2x + y - 4 \le 0 \\ x + y \ge 2 \\ y \le 5 \\ x \ge -2 \end{cases}$$

1.- Dadas las funciones
$$f(x) = \frac{2x-4}{3}$$
; $g(x) = \frac{4x}{x^2-4}$; $h(x) = \sqrt{x^2-x-6}$

- a) Halla el dominio de definición de las tres funciones.
- b) Pertenece 6 al recorrido de h(x)?
- e) El punto $P\left(-1, \frac{4}{3}\right)$, ¿pertenece a la gráfica de g(x)?.
- d) Estudia el signo de la función g(x).
- e) Estudia la simetrías de g(x).
- f) ¿Las funciones f y g se cortan en el punto $Q\left(4, \frac{4}{3}\right)$?

Todos los apartados tienen que estar debidamente justificados.

2.- Representa gráficamente las funciones:

a)
$$f(x) = |5x-2|$$
 b) $g(x) = \begin{cases} 2x-1 & \text{si } x < 1 \\ x^2 - 4x + 3 & \text{si } x \ge 1 \end{cases}$

3.- De una función f conocemos la siguiente tabla de valores:

х	-2	1	4 ·	6
f(x)	4	2	-1	2

Encuentra la función lineal que se ajuste a dichos valores y calcula, por interpolación lineal, los valores de la función para:

a)
$$x = -3.5$$

b)
$$x = 2$$

b)
$$x = 2$$
 c) $x = 7'4$

Tema II Día 02/02/2012

NOTA: En los ejercicios tienen que constar todos los pasos, en caso contrario, el ejercicio no se tendrá en cuenta.

Pregunta 1. Dadas las funciones:

$$f(x) = \frac{x-5}{x^2-5x+6},$$
 $g(x) = \sqrt{\frac{4x-8}{3x-2}}$

- a) Halla sus dominios.
- b) Halla los puntos de corte con los ejes de la función g(x).
- c) La gráfica de g(x), ¿pasa por el punto A(1,2)? Razona la respuesta.

Pregunta 2. a) Dada la función:

$$f(x) = \begin{cases} 2x^2 + 4x - 6 & \text{si } x \le 1\\ |2x - 6| & \text{si } x > 1 \end{cases}$$

- I) Representa la función. Indica los puntos de corte con los ejes. ¿Hay algún punto de discontinuidad? En caso afirmativo, indicarlo.
- II) Indica los intervalos de crecimiento y decrecimiento, así como los máximos y mínimos.
- b) Una caja de ahorros ofrece a sus clientes un 9% de interes anual para una imposición de 15.000 €. ¿Cuánto tiempo debe trascurrir dicha cantidad para obtener un capital final de 24.450 €?

Pregunta 3. a) Dada la función $f(x) = 3^{x-1} - 9$

- I) Halla los puntos de corte con el eje de abscisa.
- II) Halla f(0'25) por interpolación lineal.
- b) Resolver la ecuación: $3^{x} + 3^{x+1} + 3^{x+2} = 9477$

Pregunta 4. a) Dada la función $f(x) = \log_2(3x - 5) - 2$. Calcula su dominio, puntos de corte con los ejes y signo de la función.

- b) Resuelve la ecuación $3^{x-2} 5 = 7$.
- c) Sabiendo que $\log 2 = 0'301$ y $\log 3 = 0'477$ y aplicando las propiedades de los logarítmos . Calcular $\log \sqrt[5]{0'15}$.

1.- a) Escribe la función que nos da el sueldo mensual en euros en función del número de años trabajados de una persona que cobra 1800 € de sueldo base y 45 € al mes por cada trienio trabajado.

- b) Dadas las funciones $f(x) = \frac{2x-4}{x^2+1}$; $g(x) = \sqrt{x^2+x-12}$
 - i) Halla el dominio de definición de dichas funciones.
 - ii) ¿Pertenece 12 al recorrido de g(x)?
 - iii) La función f(x), ¿tiene algún tipo de simetría?

Todos los apartados tienen que estar debidamente justificados.

2.- a) Representa gráficamente la función:

$$f(x) = \begin{cases} -x^2 + 2x + 3 & \text{si } x \le 2\\ |3x - 7| & \text{si } x > 2 \end{cases}$$

- b) Dada la función $f(x) = 3^x 4$, obtén una tabla de valores adecuada para poder calcular f(1'4) utilizando la interpolación lineal.
- 3.- a) Resuelve la siguiente ecuación: $4^x 3 \cdot 2^x 4 = 0$
- b) Halla "x" en las expresiones:

i)
$$\log_x \frac{1}{81} = -4$$
 ii) $\log_2 \frac{1}{\sqrt{2}} = x$ iii) $\log_4 x = \frac{3}{2}$

- c) Si pongo en un banco un capital de 8000 € a un interés anual del 3% y cuando lo retiro tengo un capital de 9839 €, ¿cuántos años he tenido el dinero en el banco?
- 4.- a) Estudia el dominio, puntos de corte con los ejes y el signo de la función:

$$f(x) = \log_3(x-3)$$

b) Sabiendo que $\log 2 = 0.301$ y $\log 7 = 0.845$, halla $\log \sqrt{0.56}$ y comprueba el resultado con la calculadora (el resultado con la calculadora escríbelo con 6 cifras decimales).

Tema III Día 07/02/2012

NOTA: En los ejercicios tienen que constar todos los pasos, en caso contrario, el ejercicio no se tendrá en cuenta.

Pregunta 1. Calcular los siguientes límites: (20 puntos)

a)
$$\lim_{x \to -\infty} \left(\frac{2x^3 - 3x^2 + 1}{5x^3 + 4} \right)^{2x}$$

b)
$$\lim_{x \to +\infty} \left(\frac{x^2 - 2}{x + 1} - \frac{x - 3}{2} \right)$$

c)
$$\lim_{x\to 2} \frac{x^2 + x - 6}{x^3 - 4x^2 + 4x}$$

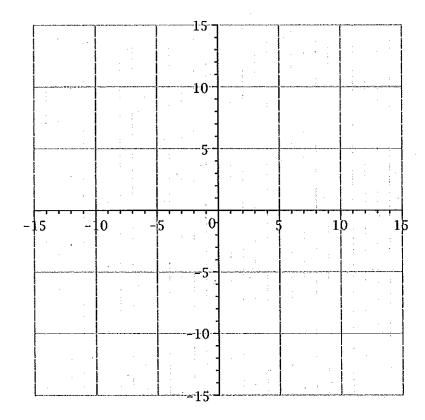
d)
$$\lim_{x \to 1} \frac{5x - \sqrt{x^2 + 11x + 13}}{x^2 + x - 2}$$

Pregunta 2. Dada la función: (10 puntos)

$$f(x) = \begin{cases} x^2 - 3x + 1 & \text{si } x < -1\\ ax + 4 & \text{si } -1 \le x \le 6\\ \frac{5x}{x - 6} & \text{si } x > 6 \end{cases}$$

- a) Halla el valor de a para que f(x) sea continua en x = -1
- b) Esta función, ¿tiene algún punto de discontinuidad? ¿De qué tipo? Justifica la respuesta

Pregunta 3. Dada la función: (10 puntos)


$$f(x) = \frac{x^2 - 3x + 2}{x^2 - 6x + 5}$$

¿Tiene alguna asíntota vertical? ¿Y horizontal? Justifica la respuesta y, si tiene alguna asíntota, halla su ecuación.

Pregunta 4. Dibuja la gráfica de una función f(x) que cumpla las siguientes condiciones: (10 puntos)

- a) Dom $f = \mathbb{R} \{0\}$
- b) Corta al eje de abscisas en x = 1 y x = 6.
- c) Tiene un máximo en P(2,5) y un mínimo en Q(-1,1).
- d) Tiene una asíntota horizontal en y = -3.

e) $\lim_{x \to 0^{-}} f(x) = +\infty$, $\lim_{x \to 0^{+}} f(x) = -\infty$ $\lim_{x \to -2^{-}} f(x) = -\infty$ y $\lim_{x \to -2^{+}} f(x) = 3$

NOTA: Todos los resultados deben estar debidamente justificados.

1.- Dada la función
$$f(x) =$$

$$\begin{cases}
2x + a & \text{si } x \le 0 \\
\frac{x^2 - 2x}{x^2 - 3x + 2} & \text{si } 0 < x < 2 \\
\frac{4}{x} & \text{si } x \ge 2
\end{cases}$$

- a) Halla el valor de "a" para que la función sea continua en x = 0.
- b) Para el valor de "a" hallado en el apartado anterior, ¿tiene la función algún punto de discontinuidad? En caso afirmativo indica de qué tipo es.
- 2.- Calcula los siguientes límites:

a)
$$\lim_{x \to 1} \frac{\sqrt{2x^2 - 1} - 1}{x^2 + x - 2}$$
 b) $\lim_{x \to +\infty} \left(\frac{x^2 - 4}{x} - \frac{x^3}{x^2 - 2} \right)$

3.- a) Deriva y simplifica la función:
$$f(x) = \sqrt{\frac{x}{x+4}}$$

- b) i) Dada la función $f(x) = ax^3 4x^2 + 4x + b$ halla "a" y "b" sabiendo que pasa por el punto P(1, 2) y tiene un extremo relativo en x = -1.
- ii) Comprobar si la función anterior tiene algún otro extremo relativo y en caso afirmativo decir de qué tipo es cada uno.
- 4.- Dada de la función $f(x) = \frac{2x^2}{x^2 9}$ dibuja su gráfica hallando: dominio, cortes con los ejes, asíntotas, crecimiento, decrecimiento y los extremos relativos.

Tema III (Recuperación) Día 16/05/2012

NOTA: En los ejercicios tienen que constar todos los pasos, en caso contrario, el ejercicio no se tendrá en cuenta.

1.- Estudiar la continuidad de la función:

$$f(x) = \begin{cases} \frac{8x}{x+2} & \text{si } x < 0 \\ 2x+1 & \text{si } 0 < x \le 2 \\ \frac{3x-1}{x-1} & \text{si } x > 2 \end{cases}$$

2.- Calcula:

a)
$$\lim_{x \to -2} \frac{x^3 + 8}{2x^2 + 3x - 2}$$

b)
$$\lim_{x\to 0} \left(\frac{2x+1}{3}\right)^{\frac{1}{x^2}}$$

3.- a) Deriva las siguientes funciones:

$$f(x) = x\sqrt{x^2 + 1}$$

II)
$$f(x) = \frac{x^3}{(2x^2+5)^2}$$

b) Demuestra que la función $f(x) = x^5 - \frac{ax^2}{2}$ tiene un extremo relativo en x = 0 sabiendo que tiene otro extremo relativo en x = 1.

¿De qué tipo son estos dos extremos relativos?

4.- Dada la función $f(x) = \frac{2x^2 - 3}{x^2 - 1}$ dibuja su gráfica hallando: dominio, cortes con los ejes, asíntotas, crecimiento, decrecimiento y los extremos relativos.

- Especifica las fórmulas utilizadas para calcular los valores que se piden.
- · Resultados con tres cifras decimales.

1.- La tabla siguiente muestra las calificaciones obtenidas por un grupo de alumnos en un examen de Álgebra (variable x_i) y en un examen de Geometría (variable y_j):

x_i	y_j	f_{ij}	,	
2	3	8		
3	4	10		
4	5	11		
6	7	17		
7	7	4		

Sabiendo que $\bar{x} = 4'400$ y que $\sigma_x = 1'661$, completa la tabla y realiza los cálculos necesarios para responder a las siguientes preguntas:

- a) ¿Qué tanto por ciento de los alumnos obtienen una calificación en Álgebra por encima de la media?
- b) Realiza una estimación de la nota en Geometría de un alumno que obtuvo un 5 en Álgebra
- c) ¿Es fiable esta estimación? Justifica la respuesta.

2.- De una variable estadística "x" se conocen los datos reflejados en la tabla:

(x_i)	(f_i)		
[10,20)	14		
[20,30)	10		
[30,40)	15		
[40,50]	11		
	· • • • • • • • • • • • • • • • • • • •	,	

- a) Halla, aproximadamente la moda y la mediana.
- b) Utilizando métodos abreviados, halla la desviación típica.
- c) Deduce el porcentaje de individuos de la población estudiada para los que la variable "x" toma un valor inferior a la media.

- 3.- De una baraja de 40 cartas sacamos dos cartas sin devolución. Halla la probabilidad de:
- a) Las dos sean figuras.
- b) Las dos sean del mismo palo.
- c) Al menos una sea una sota.
- 4.- Se lanzan dos dados. Consideramos los sucesos:
- A="Obtener suma de puntuaciones menor que 4"
- B="Obtener dos puntuaciones iguales"
- a) ¿Son compatibles los sucesos A y B?
- b) Calcula la probabilidad de A, B y $A \cup B$
- **5.-** Tenemos dos urnas A y B. En la urna A hay 8 blancas y 4 negras y en la B hay 5 blancas y 7 negras. Elegimos una urna al azar y de ella extraemos dos bolas.
- a) Halla la probabilidad de que la última bola sea negra.
- b) Halla la probabilidad de que las dos bolas sean blancas.

- Especifica las fórmulas utilizadas para calcular los valores que se piden.
- Resultados con tres cifras decimales.
- 1.- De una variable estadística bidimensional conocemos los datos reflejados en la tabla.

x_i	y_j	f_{ij}		
12	. 3	5		
14	2	10		
16	2	8	•	
18	1	2		
20	0	5		

Ya hemos calculado: $\Sigma x_i \cdot f_i = 464$; $\Sigma x_i^2 \cdot f_i = 7376$; $\Sigma y_j \cdot f_j = 53$.

Completa la tabla y realiza los cálculos necesarios para responder a las siguientes preguntas.

- a) Calcula la media y la desviación típica de las variables x_i e y_i .
- b) Deduce la ecuación de la recta de regresión de "y" sobre "x". ¿Para qué sirve?
- c) Realiza una estimación de "y" para x = 23.
- d) ¿Es fiable la estimación que has realizado? Explícalo.
- 2.- En una bolsa hay 10 bolsa numeradas del 1 al 10. Se extrae una bolsa al azar y se consideran los sucesos: A = "salir número impar"; B = "salir número primo"; C = "salir número menor o igual a 5".

Halla la probabilidad de los sucesos: A; B; C; $A \cup B$; $B \cap C$.

- 3.- Tenemos dos urnas , la urna A contiene 6 bolas blancas y 4 verdes y la urna B contiene 3 bolas blancas y 7 verdes; lanzamos un dado si sale múltiplo de 3 elegimos la urna A, en caso contrario elegimos la urna B. De la urna elegida sacamos dos bolas, halla:
- a) Probabilidad de que las dos bolas sean del mismo color.
- b) Probabilidad de que la última bola sea verde.
- 4.- El presidente de un equipo de baloncesto ha calculado que el porcentaje de seguidores en una ciudad es del 35%. Se escoge al azar a 10 personas y se considera la variable que expresa el número de seguidores en la muestra. Calcula:
- a) Probabilidad de que tres de ellas sean seguidores del equipo.
- b) Probabilidad de que al menos una de ellas sea seguidora del equipo.

- 5.- El tiempo necesario para que una ambulancia llegue a un centro deportivo se distribuye según una variable normal de media 17 minutos y desviación típica 3 minutos. Calcula:
- a) Probabilidad de que el tiempo de llegada esté comprendido entre 13 minutos y 21 minutos.
- b) Probabilidad de que el tiempo de llegada sea superior a 25 minutos.
- 6.- Se ha comprobado que el tiempo medio que resiste un adulto sin respirar es de 40 segundos, con una desviación típica de 6'2 segundos, y que los datos anteriores siguen una distribución normal. Halla:
- a) Probabilidad de que una persona resista más de 45 segundos sin respirar.
- b) Probabilidad de que una persona resista menos de 30 segundos sin respirar.
- c) ¿Qué porcentaje de personas resisten entre 30 y 50 segundos.
- 7.- En unas oposiciones el temario tiene 100 temas de los cuales me he estudiado 30 temas. En el examen se eligen 4 temas al azar y debo contestar a uno.
- a) ¿Cuál es la probabilidad de que sepa al menos 3 temas?
- b) ¿Cuál es la probabilidad de que apruebe la oposición?

ALUMNO/A.....

- 1.- a) Resuelve la ecuación $2x^3 + x^2 13x + 6 = 0$
- b) Racionaliza y simplifica la expresión: $\frac{4\sqrt{3}}{\sqrt{3}+1} \sqrt{48}$
- 2.- En un instituto hay tres grupos A, B, C de 1º de Bachillerato con un total de 75 alumnos. Si pasamos 10 alumnos del grupo B al grupo A, ambos tendrán el mismo número de alumnos; también sabemos que el triple de alumnos del grupo C excede en 5 a los del grupo B. Plantea un sistema para hallar cuántos alumnos hay en cada grupo y resuélvelo por el método de Gauss.
- 3.- a) Halla el dominio de las funciones: i) $f(x) = \frac{2x}{x^2 9}$ ii) $f(x) = \sqrt{\frac{3x 1}{2 x}}$
- b) Estudia la simetría de la función $f(x) = \frac{2x}{x^2 9}$
- 4.- a) Resuelve la ecuación $3^{x+1} + 3^x + 3^{x-1} = 117$
- b) Sabiendo que $\log 2 = 0'301$ y $\log 3 = 0'477$, calcula:
 - $i) \log 0'6 \qquad ii) \log \sqrt{\frac{5}{3}}$
- 5.- a) Calcula: $\lim_{x\to 1} \frac{\sqrt{x^2+3}-2}{3x^2-2x-1}$
- b) Estudia la continuidad de la función $f(x) = \begin{cases} \frac{x+1}{x-1} & \text{si } x < 1 \\ \frac{x^3}{x-3} & \text{si } x > 1 \end{cases}$. En caso de

discontinuidad indica de qué tipo es.

- 6.- a) Dada la función $f(x) = \frac{2x-10}{x^2-9}$ halla:
- i) Dominio y puntos de corte con los ejes.
- ii) Intervalos de crecimiento y decrecimiento. Extremos relativos.
- iii) Asíntotas.
- b) Deriva y simplifica la función $f(x) = \sqrt{\frac{2x-5}{x-3}}$
- 7.- De una baraja de 40 cartas sacamos dos cartas sin reemplazamiento. Consideramos los sucesos: A = "Las dos cartas son de oros", B = "Al menos una carta es un rey". Halla i) P(A) ii) P(B).
- 8.- a) En un curso de Bachillerato se sabe que las calificaciones de Matemáticas se ajustan a una distribución normal de media 5'5 y desviación típica 1'2.
- ¿Cuál es la probabilidad de que un alumno de este curso obtenga una calificación superior a 4?
- b) En un cuestionario de 10 preguntas sólo hay que contestar sí o no. Halla la probabilidad de que, sin conocer ninguna respuesta, acierten al menos dos preguntas?

MATEMÁTICAS APLICADAS 1º BACHILLERATO

SEPTIEMBRE 2012

ALUMNO/A.....

1.- a) Resuelve la ecuación
$$\sqrt{x^2 - 2x + 4} - 2\sqrt{x + 1} = 0$$

b) Racionaliza y simplifica la expresión:
$$\frac{\sqrt{2}}{2\sqrt{3}-\sqrt{2}}-\sqrt{24}$$

2.- Una empresa ha invertido $73000 \in$ en la compra de ordenadores portátiles de tres clases A, B y C, cuyos costes por unidad son de $2400 \in$, $1200 \in$ y $1000 \in$ respectivamente. Sabiendo que, en total, ha adquirido 55 ordenadores y que la cantidad invertida en los de tipo A ha sido la misma que la invertida en los de tipo B, averigua cuántos aparatos ha comprado de cada clase la empresa..

i)
$$f(x) = \frac{x+4}{2x^2+5x-3}$$

$$ii) \ f(x) = \frac{\sqrt{5-2x}}{x-3}$$

b) Estudia el signo de la función
$$f(x) = \frac{x^2 - 4}{x + 5}$$

4.- a) Resuelve la ecuación:
$$\log(x+6) - 2\log(x-3) = 1$$

i)
$$2^{x^2-1} = 8$$
 ii) $\left(\frac{1}{4}\right)^x = 2^{3x+1}$

5.- a) Calcula:
$$\lim_{x \to -1} \frac{\sqrt{x+2} - \sqrt{3+2x}}{x+1}$$

b) Deriva y simplifica la función
$$f(x) = \frac{x^2 - 3x}{\sqrt{5x + 4}}$$

6.- a) Dada la función
$$f(x) = \frac{x^2}{x^2 - 4}$$
 halla:

i) Signo y puntos de corte con los ejes.

ii) Intervalos de crecimiento y decrecimiento. Extremos relativos.

iii) Asíntotas.

7.- Se ha solicitado a un grupo de 50 individuos información sobre el número de horas que dedica diariamente a dormir (variable x_i) y a ver la televisión (variable y_j). Las respuestas han permitido elaborar la siguiente tabla y en un examen de Geometría:

x_i	y_j	f_{ij}	
6	4	3	
7	3	16	
8	3	20	
9	2	10	
10	1	1	
	-	-	

Sabiendo que $\sigma_x = 0.894$ y que $\sigma_y = 0.555$, completa la tabla y realiza los cálculos necesarios para responder a las siguientes preguntas:

- a) Halla el coeficiente de correlación lineal e interprétalo.
- b) Si una persona duerme 8 horas, ¿cuánto tiempo cabe esperar que vea la televisión?

NOTA: Especifica las fórmulas utilizadas para calcular los valores que se piden. Resultados con tres cifras decimales.

- 8.- a) El 10 % de la producción de ciertas baterías para automóviles resulta defectuosas. Se eligen al azar 4 baterías. Determinar la probabilidad de que al menos dos sean defectuosas.
- b) La longitud de cierto tipo de peces sigue una distribución normal de media 100 mm y desviación típica 9 mm. ¿Cuál es la probabilidad de que uno de esos peces mida entre 82 mm y 91 mm?